Nilai $\displaystyle \lim_{x\to\frac{\pi}{4}}\sin\left ( \frac{\pi}{4}-x \right )\tan\left( x+\frac{\pi}{4} \right )$
adalah...
[Mat-IPA UTUL UGM 2010]- 2
- 1
- 0
- -1
- -2
$$\lim_{x\to0}\frac{1-cos^2x}{x^2 \tan \left( x+\frac{\pi}{3} \right )}=\cdots$$
[Mat-IPA SNMPTN 2012]- $-\sqrt{3}$
- 0
- $\frac{\sqrt{3}}{3}$
- $\frac{\sqrt{3}}{2}$
- $\sqrt{3}$
$$\lim_{x\to0}\dfrac{x^2\sqrt{4-x}}{\cos x-\cos 3x}=\cdots$$
[Mat-IPA SBMPTN 2013]- -2
- $-\frac{1}{2}$
- $\frac{1}{2}$
- 1
- 2
$$\lim_{x\to0}\left \{ \dfrac{1}{x\tan x} -\dfrac{\cos^2 x}{x\sin x} \right \}=\cdots$$
[Mat-IPA SNMPTN 2007]- $\frac{1}{4}$
- $-\frac{1}{4}$
- 0
- $-\frac{1}{2}$
- $\frac{1}{2}$
[Mat-IPA SIMAK UI 2010]- -8
- -4
- -2
- 2
- 4
[Mat-IPA SBMPTN 2013]- 2
- $\frac{1}{2}$
- -1
- $-\frac{1}{2}$
- -2
[Mat-IPA SIMAK UI 2012]- $\frac{1}{b}$
- b
- -b
- $-\frac{1}{b}$
- 1
Mat-IPA SBMPTN 2013- 2
- $\frac{1}{2}$
- $-\frac{1}{6}$
- $-\frac{1}{2}$
- -6
$$\lim_{x\to 0}\dfrac{\cos x \sin x - \tan x}{x^2 \sin x}=\cdots$$
[Mat-IPA SIMAK UI 2013]- -1
- $-\frac{1}{2}$
- 0
- $\frac{1}{2}$
- 1
[Mat-IPA SBMPTN 2013]- 2
- $\frac{1}{2}$
- -1
- $-\frac{1}{2}$
- -2
[Mat-IPA SIMAK UI 2012]- $\frac{1}{b}$
- b
- -b
- $-\frac{1}{b}$
- 1
Mat-IPA SBMPTN 2013- $\frac{3}{2}$
- $\frac{1}{2}$
- $-\frac{1}{2}$
- -1
- -2
Mat-IPA SBMPTN 2013- 3
- $\sqrt{3}$
- $-\frac{\sqrt{3}}{3}$
- $\frac{1}{3}$
- $\frac{\sqrt{3}}{2}$
Jawaban B
Jawaban C
Jawaban C

Jawaban E
Jawaban C
Jawaban A
Jawaban C
PENJELASAN
PENJELASAN
Jawaban C
$$\begin{align*} &=\lim_{x\to0}\dfrac{x\tan 3x}{\cos 6x-1}\\ &=\lim_{x\to0}\dfrac{x\tan 3x}{-2\sin^2 3x}\\ &=\lim_{x\to0}\dfrac{x\cdot3x}{-2\cdot\left ( 3x \right )^2}\\ &=\lim_{x\to0}\dfrac{3x^2}{-18x^2}\\ &=-\dfrac{1}{6} \end{align*}$$
$$\begin{align*} &=\lim_{x\to0}\dfrac{x\tan 3x}{\cos 6x-1}\\ &=\lim_{x\to0}\dfrac{x\tan 3x}{-2\sin^2 3x}\\ &=\lim_{x\to0}\dfrac{x\cdot3x}{-2\cdot\left ( 3x \right )^2}\\ &=\lim_{x\to0}\dfrac{3x^2}{-18x^2}\\ &=-\dfrac{1}{6} \end{align*}$$
Jawaban A
Jawaban A
Jawaban C
Jawaban A
Jawaban C